
The CaveUT System: Immersive Entertainment
Based on a Game Engine

 Jeffrey Jacobson(1), Marc Le Renard (2), Jean-Luc Lugrin (3) and Marc Cavazza (3)
(1) Departement of Information Sciences, University of Pittsburg 135, North Bellefield, PA 15260

Jeff@planetjeff.net
(2) CLARTE, 4 Rue de l’Ermitage, 53000 Laval, France.

Lerenard@esiea-ouest.fr
(3) School of Computing, University of Teesside, TS1 3BA Middlesbrough, United Kingdom.

j-l.lugrin@tees.ac.uk, m.o.cavazza@tees.ac.uk

ABSTRACT
We describe the development of the CaveUT system, which is a
software supporting immersive virtual reality installations based
on the Unreal Tournament game engine. CaveUT implements
several high-end VR features such as real-time stereoscopy with
head and hand tracking. We demonstrate the use of CaveUT in
the SAS Cube™, a PC-based CAVE™-like immersive four-
screen display. One of the main advantages of the system is to
support full immersive VR while retaining the advanced features
of game engines in terms of interaction and inclusion of
behavioural (or AI) systems. We illustrate the use of CaveUT on
two installations: an artistic VR installation and an immersive
interactive storytelling system.

Categories and Subject Descriptors
H5.1 [Multimedia Information Systems] Artificial, Augmented
and Virtual Reality - Virtual Reality for Art and Entertainment.

General Terms
Design and Experimentation.

Keywords
Game engine, Immersive Displays, Digital Arts, and Intelligent
Virtual Environments.

1. INTRODUCTION
Sensory immersion combined with real-time interaction (Virtual
Reality, or "VR") has always had great promise for innovative
game design, but application development software and libraries
for VR research are intended for very diverse applications. They
generally do not provide the animation support, optimized
graphics and real-time Physics that most game engines
incorporate. CaveUT1 solves this problem by adding a VR
interface to the Unreal Engine2, which preserves the engine's
built-in advantages, allows for the re-use of existing game
content, and allows for the creation of new content using standard
methods. CaveUT, which follows the principles described in the
original CAVE™ system [6], supports a variety of immersive
display strategies, from low-tech to fully stereoscopic multi-
screen display, which we describe in this paper. CaveUT is part
of a general trend among researcher to take advantage of new
technologies developed by the game industry [11], including
support for immersive displays. Large, single-screen displays
offer simplicity and compatibility with a variety of game engines,
and the most advanced provide stereographic imaging with
tracking3 (see Figure 1). Several approaches to the immersive
visualization of game engines output have been described.
Graphics “tiling” software allows games engines to display on
very large composite screen displays4. With specialized graphics
drivers, and the correct settings, a game engine can display in the
new all-digital dome displays5. A game engine can display in a
CAVE™-like [6] enclosure through direct modification of the
engine itself6 with full tracking and stereographic imaging.
Finally, a game engine can display in CAVE™-like enclosures

1 CaveUT. (2004). CaveUT, http://planetjeff.net/ut/CaveUT.html
2EpicGames.(2004).UnrealTournament,

http://www.unrealtournament.com
3 Vizbox. (2004). Vizbox, Inc., http://www.visbox.com/
4Chromium.(2004).Chromimum,http://chromium.sourceforge.net/
5 DomeUT. (2004). DomeUT, http://planetjeff.net#DomeUT
6CaveQuake.(2004).CaveQuakeII,

http://brighton.ncsa.uiuc.edu/~prajlich/caveQuake/,VRizer.
(2004). VRizer, http://futurelab.aec.at/vrizer/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

through the combination of modified graphics drivers7 and top-
level code to synchronize the views. The latter approach has been
adopted for the development of CaveUT. It avoids many licensing
and distribution issues, and allows straightforward upgrades when
new versions of the game engine are released.

CaveUT 2004(TM) is a set of open-source freeware modifications,
which allows the player to interact with Unreal Tournament,
where s/he sees a unified view across multiple screens which can
be in any orientation to the user. It has been available to the
public since 2001 ([7], [8], [9]) and is detailed at its online
distribution site1. The latest version is CaveUT 2004 which takes
advantage of the latest release of Unreal Tournament and provides
better synchronization between screens.

Recently, in collaboration with members of the ALTERNE
project [3], CaveUT has been extended to support stereoscopic
display and real-time tracking of head and hand position. These
capabilities have been incorporated into CaveUT 2003 and we
will soon add them to CaveUT 2004. CaveUT 2003 v2.0 is
available by request (jeff@planetjeff.net) and will be available as
part of the AlterneTM software platform for VR Art8 [3]. In
further sections, we will illustrate the use of CaveUT through
some of the artistic VR installations developed as part of the
ALTERNE project (figure 2).

Figure 1: A Immersive Display: The SAS-CUBETM

2. A CaveUT Primer
The development of CaveUT was made possible by the fact that
Unreal Tournament (UT) is partially open-source. UT uses the
proprietary Unreal Engine, which handles graphics rendering,
animation, physics, networking and a byte-code interpreter which
supports Unreal Script, a Java-like programming language. Much
of the game, itself, is written in Unreal Script, and all of it is open
source. A large community of players, game designers and
researchers constantly produce new, open-source code and
content, and CaveUT initially followed this trend. CaveUT is a
package of original code written in Unreal Script with extensive
documentation for its proper use. The original (core) CaveUT

7 VRGL. (2004). VRGL, http://planetjeff.net/ut/CUTVRGL.html
8 http://www.alterne.info

supported only monoscopic imaging, no rendering
synchronization and no tracking capability. However, it can still
be useful to develop low-cost immersive displays, straightforward
to set up, and is currently employed in several research
installations.

A multi-screen display based on CaveUT requires a server
computer connected by a standard LAN to a number of client
computers, at least one for each screen in the display. The
operator begins a multiplayer game of Unreal Tournament with
one normal player on the server and one “spectator” player on
each of the clients. Each spectator initially duplicates the view
seen by the player on the server. On each client, the CaveUT
code rotates the view according to parameters defined in a
configuration file, so that each screen is showing the part of the
composite view it is supposed to. For example, the view in the
SAS-Cube™ shown in figure 2 is produced in part by having one
client “look” forward, one look ninety-degrees left, another look
ninety-degrees right and the last one look down. CaveUT
preserves these rotations relative to the server player's view, so
the operator can navigate using standard game controls attached
to the server.

Figure 2: Immersive Visualisation In the SAS-CUBETM

However, the perspective correction on each screen must be
adjusted so that the ideal viewing point for each screen is located
at the same point in physical space. For a static (not using any
tracker) CaveUT installation, this creates single, ideal, viewing
location for the whole display. As long as the player keeps her
head at or very near this point, she will see a unified and
undistorted view. Interestingly, the screens can rest in any
orientation to the viewer and they do not even have to contiguous.
For example, CaveUT could be used for a driving simulator,
where CaveUT provides the view for the front and back
windshields, each side window and the rear-view mirror. The
perspective correction is introduced by a modified OpenGL
wrapper library, called VRGL (by Willem de Jonge), which rests
“between” OpenGL and the Unreal engine. VRGL and CaveUT
share the same configuration file, which provides the parameters
needed for the perspective correction. Unlike the CaveUT code,
VRGL is an independent package and could be used for other
applications (for a more detailed explanation, see the CaveUT
distribution site1).

3. Rendering Synchronization
In CaveUT 1.0, rendering on the component display screens was
not synchronized. This is not a problem for monoscopic viewing
if all of the clients are able to render at thirty frames per second or
faster, but that is not always going to be possible, even with
identical machines. Load will fall unevenly on each of the client
computers, depending on which part of the scene it is rendering.
CaveUT 2.0 solves this problem with the addition of a simple
swaplock server, which runs on the server computer in parallel
with the UT game server. The server starts by broadcasting a
“ready” message to the client computers. The signal instructs the
VRGL on each computer to wait for a “render” message before
displaying the current rendered frame. Each computer then sends
the swaplock server a “ready” signal. The server will wait until it
has received a signal from all of the clients, before sending them
the “render” signal. This insures that all screens will render at the
same time and at the speed of the slowest client. Although this
could in theory decrease the rendering rate below acceptability
thresholds, in practice this has never been observed in the various
implementations with which we have experimented.

4. Tracking
CaveUT now supports real-time tracking in physical space, using
the Intersense™ IS900 system9 or any similar devices. Attaching
sensors to the user's head or a hand-held controller creates many
opportunities for user interactions with the virtual environment.
Tracking the player's head allows CaveUT to generate a stable
view of the virtual world, while the player is free to move around
inside the display (which has the size of a traditional CAVE™).
This provides automatic adjustment for the user's height, allows
her to use parallax effects for better depth perception of the scene,
and permits a wider range of interactions with the application.
Hand-tracking allows the UT-based application to be aware of the
location of user's hand or some hand-held controller at all times.
This allows much more natural control designs, such as being able
to physically interact with a virtual object by simply pointing the
controller at it and pressing one of the control buttons. This
potentially supports a wide range of tracker-based interactions
(for a detailed taxonomy of interaction with VR applications and
tracked controls, see [1]).

From a system integration perspective, CaveUT uses another
freeware package, Virtual Reality Peripheral Network (released
by the Department of Computer at the University of North
Carolina at Chapel Hill) to handle input from all control
peripherals such as joysticks, buttons, gamepads and the tracking
system itself. All controllers are physically attached to the server
machine, and data from the peripherals are collected by the VRPN
server, which runs in parallel to the UT game server. The VRPN
server converts data from the control peripherals into a generic
normalized form and sends it to the CaveUT code in the UT game
server, via a UDP port. The modified UT game server uses this
information to update the user's location in the virtual world from
the head tracker and to process commands from the other control
peripherals.

With respect to the head tracker, this means that when the user
takes a step in physical space, the server moves his corresponding
viewpoint (and avatar) in virtual space. The VRPN server also

9 Intersense. (2004). http://www.isense.com/products/prec/is900

broadcasts the user's new location to each one of the UT clients,
and the information is received by a VRPN client. Then, the
VRPN client sends the tracking information via another UDP port
to the VRGL code attached to the UT Client. VRGL uses this
information to adjust the perspective correction, in real-time, to
preserve the perspective depth illusion. The overall result is that
the user's view into the virtual world looks stable to him and the
correspondence between the virtual world and the real one is
maintained.

Data from the hand-held controller can be use to select and
manipulate objects in virtual space. For example, the player
could select and “grab” an object by pointing the controller at it
pressing a button on the controller. This supports various forms
of object interaction, such as the triggering of object behavior or
the real-time manipulation of the object position and orientation.
Tracking is also a prerequisite for binocular display using active
stereo imaging in immersive virtual reality systems.

5. Stereographic Display
CaveUT 2.0 supports stereographic display by using two
computers per screen, one to render the left eye view and one to
render the right eye view, with an average frame rate of 60
frames/sec per eye in most experiments reported here The camera
view can be offset from the viewer's default configuration by a set
value equal to half the inter-pupillary distance. If no tracking is
used, then the separation is horizontal (left and right) and the
illusion will hold as long as the player keeps his or her head level,
which makes floor or ceiling screens impractical [10]; however,
with tracking, the view for each eye remains centered on the
designated eye, regardless of head position and orientation. This
is the solution implemented for use in the SAS Cube™, which
includes a floor screen. For active stereo, (as well as for color-
based stereo) this allows the user to look in any direction and at
any angle. CaveUT supports various approaches to stereoscopic
display, including passive and active stereoscopy. For passive
stereo with two projectors per screen, a linear polarizing filter
should be placed in front of each projector lens and in front of
each of the viewer's eyes. The orientations of the filters on the
projector lenses should differ by ninety-degrees. As long as the
player keeps his or her head level, the illusion is excellent and the
colors are vivid. This approach requires that the projectors do not
produce light which is already polarized as some LCD projectors
do. This should not be a problem with DLP projectors. For color-
based stereo, the left and right projectors should be set to produce
only red and green respectively, and red-green filter glasses are to
be worn by the player. This approach is almost never used,
because the resulting image is in an unattractive monochrome, but
it is easy to implement and robust.

Active stereo requires a single stereographic projector which will
alternate between the left and right eye views at 120 frames per
second. The player wears “shutter glasses”, on where each lens
alternate between black and clear, also at 120 frames per second.
The glasses switch in time with the display, and the result is that
each eye gets the view it is supposed to at 60fps—the left view for
the left eye and the right view for the right eye. All of the screens
in the composite display must also switch view at exactly the
same time, a desirable state called “genlock”.

The original CaveUT system does not have software support for
generating an active stereographic image from a single machine.

Figure 3: CaveUT 2.0 Architecture

The CaveUT 2.0 installation in the ALTERNE SAS-Cube™
platform uses two computers for each screen, one for each eye
view, and uses the DVG (video) cards in their ORAD10 (PC)
cluster to mix the two and send it to a single stereographic
projector. The DVG cards also handle the genlock
synchronization across all screens of the composite display (see
figure 3).

6. Interaction Design With CaveUT
The interaction design for Unreal Tournament and most other
computer games assumes a standard keyboard, mouse and
monitor interface. However, optimal interaction designs for
immersive displays are quite different. While CaveUT can be
used with almost any preexisting game written for Unreal
Tournament, important features of the game's interaction design
may no longer make sense in an immersive display, especially if
the player is standing up, using a completely hand-held control
such as a gamepad. Unlike a desktop display, an immersive
display must present a view of virtual world which matches the
real world in scale. This means that the player must perceive a
meter in the virtual world to be the same as a meter in the real
world, as though could simply walk through the display into the
virtual environment.

CaveUT handles these issues automatically, but the resulting
illusion may make the virtual world look and feel larger or
smaller than the designer wants it to be. The game designer can
solve most of the problem by applying a scale factor to the virtual
environment display and to the collision handling. Finally,
another important self-location cue in a visualization engine
derived from a first-person-shooter game, is the location of the
user's “hand”, which can be derived from the display of the
players’ weapon in the original game. This is important whenever
the user has to interact precisely with stereo objects at short

10 http://www.orad.tv

distance. The best solution in our experience consists in
associating such position to the tracker-equipped gamepad held
by the user.

With CaveUT, the player can use any game peripheral (joystick,
gamepad, etc.) or more advanced versions of these devices,
equipped with trackers, which is the solution we adopted. There
are many complex issues related to controls in immersive
environments [1]. Two issues stand out. First, most FPS game
players move very quickly in the virtual environment, which is
disorienting in an immersive display and does not correspond to
any reasonable walking speed (notwithstanding the fact that it can
generate cybersickness). The “gain” on the controls must be
carefully adjusted to match the experience intended for the
current design (immersive gaming, VR art, etc.). Second, most
FPS games require the user to center his view on an object to
shoot or select it, which requires rotating the view quickly and
often. In an immersive display this can be disorienting and fails
to take full advantage of the wide field of view afforded by the
display. Ideally, the user should be able to select something by
simply pointing at it. Generally, immersive game design must
take advantage of the wide field of view afforded by the display
to be worthwhile. If everything interesting is always at the center
of the display, then the player gets no benefit from the display.

7. CaveUT in action: Artistic Installations
The stereoscopic version of CaveUT described in this paper has
been developed in the course of the ALTERNE project, which is a
VR Art project [3] aiming at developing a re-usable platform for
the creation of VR Art installation. The main objective of
ALTERNE is to define a technological platform for the design of
“alternative reality” environments, i.e. virtual worlds whose
fundamental behavior can be entirely re-defined in terms, for
instance, of laws of Physics. This objective brings specific
demands on the visualization engine that should support the
system. Game engines, and in particular the Unreal Tournament
2003™ engine, appear as a natural choice, as they include

sophisticated event-based systems, which serve as an integration
layer for the re-definition of environment behavior. The
ALTERNE software platform is thus organized around three main
components: i) the UT 2003™ engine for visualization and basic
object interaction mechanisms, ii) CaveUT to support immersive
stereoscopic visualization and tracking and iii) the “alternative
reality” engine, which contains qualitative simulation systems
overriding the native Physics engine for specific object categories.
ALTERNE installations have provided the first test beds for the
stereoscopic version of CaveUT described in this paper. Several
artistic briefs have been implemented, which define immersive
virtual worlds in which the user experiences novel forms of
interaction with the environment.

The first example illustrating the use of CaveUT is an artistic
installation developed as part of the ALTERNE project,
“Ego.Geo.Graphies”, by Alok Nandi [3]. In this installation, the
user navigates in an organic world populated by spheres which
originate in determinate areas of the environment. The spheres’
behaviour depends on the perceived “empathy” of the user, which
is a function of her navigation patterns, unknown to her. This
behavior manifests itself essentially through the effects that
follow collision between spheres, which range from soft sphere
merging to explosions propagating to the environment. These
effects are under the control of the alternative reality engine,
which intercepts collision events and computes alternative forms
of causality.

This brief makes use of most of the features supported by
CaveUT, from tracking and object interaction to stereoscopic
visualization. User navigation brings her in close vicinity to
geometrical structures which acquire their full dimension as real
stereo 3D objects, prompting the user to adopt appropriate
navigation patterns around or under such objects. The spheres
themselves can traverse the SAS Cube™ volume as floating 3D
objects, conferring a high level of realism to the user interaction.
In addition, the ultrasonic tracking implemented in CaveUT
supports direct physical interaction with the spheres through the
SAS Cube™ gamepad, which can be attracted or pushed back by
the user (Figure 4).

Figure 4: "Ego.geo.Graphies" in The SAS-CUBETM

More recently, we have investigated how work developed with
UT 2003 could be ported to an immersive context using CaveUT.
Interactive storytelling is one of the applications that epitomize
what future entertainment systems could look like. In particular,
the “Holodeck™” system popularized by the Star Trek series has
became a model for research in future immersive interactive
storytelling system [12] [13]. Such a system is characterized by
the full immersion of the user in a 3D stage, populated by virtual
actors, in which the plot unfolds around the user herself. It has
thus seemed a natural extension of our research in Interactive
Storytelling [2] to adapt it to a fully immersive platform to
explore the “Holodeck™” concept. Our storytelling system is
developed on top of the Unreal Tournament engine, which made
CaveUT a natural choice to port it to a fully immersive context. In
the next sections, we briefly summarize the main features of the
storytelling system, and discuss how the immersive
implementation affects basic interactive storytelling concepts. We
then comment upon the technical issues which had to be solved in
the context of our CaveUT implementation.

We have named our approach “character-based interactive
storytelling” [2] to reflect the specific stance taken with respect to
relations between characters and plot. The baseline plot for the
interactive narrative (in the example supporting our experiment,
the plot consists in a Sitcom-like episode about a group of friends
organizing a party) is projected onto individual roles for the
virtual actors, formalized as HTN plans. Each virtual actor will
thus act independently according to its baseline role in the virtual
world. The dynamic interaction between actors is the key
principle behind the generation of multiple narratives from a basic
storyline. The technical basis for dynamic story generation is that
each actor’s role is formalized as a plan to be executed in the
virtual stage; several actors will be competing for resources
shared in the same environment, these resources being objects or
other actors. These conflicts for resources result in plan failure
and re-planning, hence creating humorous situations and driving
the narrative forward. The same mechanisms support various
forms of user intervention in the narrative, which will affect the
characters’ actions by failing or modifying some of their goals.
Detailed technical descriptions can be found in [5].

An immersive implementation affects the paradigm for user
involvement in the interactive narrative. We have originally
developed our system for an “interactive TV” philosophy in
which the user would influence the story from a god-mode
perspective rather than as an actor. We then explored a mixed-
reality approach in which the user was simultaneously actor and
spectator [4]. In the “Holodeck™” paradigm implemented here
through CaveUT (figure 5), the user interacts from a first-person
perspective, as a member of the cast. The stereoscopic display
confers an increased feeling of realism, as 3D actors traverse the
SAS Cube™ space, avoiding the user whose tracked position
generates a bounding box. Full immersion and hand/wand
tracking supports improved physical intervention on the virtual
stage, i.e. the user can influence the story unfolding by
removing/hiding key narrative objects (in addition to other forms
of interaction, such as influencing actors through speech
recognition).

Figure 5:The “Holodeck™” in The SAS-CUBETM

8. Conclusions
Through the implementation of CaveUT, we have shown that the
advanced features provided by game engines for both
visualization and interaction could be adapted to the context and
specific requirements of immersive virtual environments. This has
significant implications for entertainment technologies, as it
opens the way for the exploration of gameplay in VR and perhaps
the search for game genres better suited for the VR setting. One of
these new genres in undoubtedly interactive storytelling, whose
immersive form endeavors to implement the Holodeck concept.
Existing forms of digital entertainment such as VR Art, whose
installations used to be developed through custom-made, high-
cost, VR systems, can greatly benefit from this approach, which
combines sophisticated features within greater accessibility of the
software platform to developers. Finally, immersive VR based on
game engines also constitutes yet another example of the
increasing use of game technologies in non-gaming applications.

9. ACKNOWLEDGMENTS
Part of the work presented here has been funded by the European
Commission through the ALTERNE (IST-38575) Project. The
“Ego.Geo Graphies” installation has been authored by Alok
Nandi as part of the same project. The authors acknowledge the
assistance of Epic Ltd through “PublicVR”. The opinions
expressed in this article are the authors’ only and this does not
imply any endorsement by Epic.

10. REFERENCES
[1] Bowman, D. A. Principles for the Design of Performance-

oriented Interaction Techniques. In K. M. Stanney (Ed.),
Handbook of Virtual Environments, Mahwa, New Jersey:
Lawrence Erlbaum Associates, Inc., Publishers, 2002.

[2] Cavazza, M., Charles, F. and Mead, S.J.. Character-based
Interactive Storytelling. IEEE Intelligent Systems, 17, 4,
2002, 17-24.

[3] Cavazza, M., Lugrin, J. L., Hartly, S., Libardi, P., Barnes, M.
J., LeBras, M., Le Renard, M., Bec, L., Nandi, A. New Ways
of Worldmaking: the Alterne Platform for VR Art. ACM
Multimedia 2004, New York, USA, 2004.

[4] Charles F., Martin O., Cavazza M., Mead S.J., Nandi A. and
Marichal X. Compelling Experiences in Mixed Reality
Interactive Storytelling. International Conference on
Advances in Computer Entertainment Technology, ACE
2004, ACM Press, Singapore, 2004, 32-41.

[5] Charles, F. and Cavazza, M. Exploring the Scalability of
Character-based Storytelling. Third ACM Joint Conference
on Autonomous Agents and Multi-Agent Systems, ACM
Press, New York, USA, 2004, 872-879.

[6] Cruz-Neira, C., Sandin, D.J. and DeFanti, T.A. Surround-
Screen Projection-Based Virtual Reality: The Design and
Implementation of the CAVE. Proceedings of the ACM
SIGGRAPH 1993 Conference, 1993, 135-142.

[7] Jacobson, J. Configuring Multiscreen Immersive Displays
With Existing Computer Equipment. Human Factors and
Ergonomics Society 46th Annual Meeting, Baltimore, 2002.

[8] Jacobson, J. Using CaveUT to Build Immersive Displays
With the Unreal Tournament Engine and a PC Cluster, ACM
SIGGRAPH 2003 Symposium on Interactive 3D Graphics,
Monterry, California, (April 2003).

[9] Jacobson, J., and Hwang, Z. Unreal Tournament for
Immersive Interactive Theater, Communications of the ACM
, 45 , 2002, 39-42.

[10] Jacobson, J., Redfern, M. S., Furman, J. M., Whiney, L. W.,
Sparto, P. J., Wilson, J. B., Hodges, L. F.. Balance NAVE; A
Virtual Reality Facility for Research and Rehabilitation of
Balance Disorders. ACM Virtual Reality Software and
Technology (VRST), Banff, Canada, 2001.

[11] Lewis, M., and Jacobson, J. Game Engines In Scientific
Research. Communications of the ACM, 45, 2002, 27-31.

[12] Murray, J.H. Hamlet on the Holodeck: The Future of
Narrative in Cyberspace, MIT Press, Cambridge, 1997.

[13] Swartout, W., Hill, R., Gratch, J., Johnson, W.L.,
Kyriakakis, C., LaBore, C.,Lindheim, R., Marsella, S.,
Miraglia, D., Moore, B., Morie, J., Rickel, J.,Thiebaux, M.,
Tuch, L., Whitney, R., Douglas, J. Toward the Holodeck:
Integrating graphics, sound, character and story. Proceedings
5th International Conference on Autonomous Agents
(Agents-01), ACM Press, New York, 2001, 40

